Remote Controlled Helicopter

Abdul Aldulaimi, Travis Cole, David Cosio, Matt Finch, Jacob Ruechel, Randy Van Dusen 10/7/13

Overview

- Client and Requests
- Helicopter facts
- Needs
- Objectives
- Constraints
- QFD
- Gantt Chart
- Future

Client and Requests

- Client is Dr. Raju
- Scale remote controlled helicopter by 1.5
- Perform as the original helicopter if not better
- Have the capability for a live feed video camera
- Have a respectable battery life
- Durability

U13A-RC Helicopter

- Battery
- Blades
- Stability
- Lights
- Camera
- Dimensions

Figure 1: Remote Controller Helicopter

Controller

- Frequency
- Functions
- Display
- Buttons
- Controlling radius

[1] Figure 2: Wireless Remote Control

Needs & Goal

Need:

Create an upscale fully functioning remote controlled flying vehicle that has the capability for attachments for various real world applications.

Goal:

Successfully upscale a remote controlled helicopter with the ability to add mission specific accessories.

Objectives

- Interchangeable attachments
- Battery compatibility
- Carrying capability
- Waterproof
- Range
- Stability

Constraints

- Size- increased by 1.5x
- Lift- enough to maneuver with added weight
- High strength to weight ratio
- Satisfactory battery life
- Remotely controlled

Constraints (cont'd)

- Accessories can be attached
- Live data reported remotely
- Time- 1 semester design/1 semester build
- All costs must be justified

Engineering Requirements

- Yield Strength [psi]
- Weight [lbs]
- Power [ft-lb/s]
- Length [inches]
- Lift [lbf]

Quality Function Deployment

		Engineering Requirements				
		Yield Strength	Weight	Power	Length	Lift
Customer Requirements	Scale Ratio to 1.5		Х		Х	Х
	Perfomance	Х				Х
	Durability	Х				
	Flight Duration			Х		
	Attachments		Х	Х		
	Units	psi	lb	ft-lb/s	in	lbf
		Engineering Targets				

Future

- Begin to assemble critical subsystems
 - Power plant and rotor assemblies
 - Must be calibrated
- Build frame and get ready for integration of rotor assemblies
- Assemble all subsystems and test
- Recalibrate and fine-tune

Recap

- Client and Requests Dr. Raju wants scale helicopter.
- Need/Goal Gave specific statements.
- Objectives How the helicopter performs.
- Constraints To increase the size, life, durability, and budget.
- QFD.
- Project planning Gantt Chart.
- What's to come in the future.

Reference

• [1] UDIRCTOYS INDUSTRY CO., 2012, "UDIR/C," http://www.udirc.com/eng/show.asp?id=49

Questions?